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Abstract The dispersive nonlinear shallow-water equations of Antuono et al. (Stud Appl Math 122:1–28, 2008)
are solved by means of an explicit arbitrary high-order accurate finite-volume scheme for nonlinear hyperbolic
systems with stiff source terms. Tests against typical benchmark solutions are used to illustrate the robustness and
accuracy of the solver while typical solutions for the propagation of solitary waves on a slope highlight the solution
value in reproducing nearshore flows.
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1 Introduction

The mathematical and numerical modeling of nearshore flows has grown enormously in the last 30–40 years. It is
becoming more and more evident that the pioneering contributions given by Professor DH Peregrine to this research
field, which provides the needed bases both to shallow-water oceanographic studies and to coastal-engineering anal-
yses, have been fundamental. His studies of wave propagation in shallow water laid the foundations of a major part
of modern nearshore hydrodynamics.

The impact of the paper “Long waves on a beach” [1] goes well beyond the 340 official citations it currently
counts: virtually all modern Boussinesq-type models for dispersive waves on shallow waters derive theoretical and
numerical rationales from that paper which introduced equations which might deserve to be named “Peregrine’s
equations”.

A similarly important influence has been Professor Peregrine’s contribution to the modeling of nearshore flows
by means of the Nonlinear Shallow-Water Equations (NSWEs hereinafter). The work of Hibberd and Peregrine
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72 G. Grosso et al.

[2] “Surf and run-up on a beach: a uniform bore”, co-authored with his PhD student Stephen Hibberd, has both
opened the way to the modern approach of solving the NSWE by means of Godunov-type models and solved the
long-standing problems associated with the numerical representation of the shoreline motion induced by breaking
waves.

In view of the above, we are honored to provide a contribution to the research field which Professor Peregrine so
extensively enriched by illustrating some solutions of a model aimed at reconciling and integrating the approaches
based on both NSWEs and Boussinesq-type equations (BTEs hereinafter).

The model in question is based on Dispersive Nonlinear Shallow-Water Equations (DNSWEs hereinafter) and
has been conceived to overcome some of the theoretical and numerical limits associated with both NSWEs and
BTEs.

In more detail, the fundamental limitations introduced by the BTEs are related with the treatment of the shoreline
boundary conditions and with the representation of wave-breaking-induced energy dissipation while the NSWEs
are largely limited by the poor representation of wave shoaling.

Problems also arise in the numerical solution of the chosen model equations; this is particularly true for the BTEs;
the development of suitable numerical methods has lagged behind the effort devoted to finding the most suitable set
of equations. Recent studies have recognized a need to treat the nonlinear and dispersive operators separately, each
with the most suitable numerical method. Some of these models, based on the Operator Splitting approach [3,4]
were also “hybrid” in terms of the numerical techniques in use. For example, Erduran et al. [5] used a finite-volume
method for the conservative part of the equations while the highest-order dispersive terms were discretized using
a finite-difference scheme. All these methods provide fairly good predictions at the cost of using varied numerical
schemes with different characteristics. More recently Cienfuegos et al. [6] chose a Godunov-type solver for the
whole weakly dispersive BTEs at hand, thus employing numerical techniques typically employed in the solution of
the NSWEs to integrate a set of BTEs.

The approach illustrated in the present paper is radically new: a set of DNSWEs is used to allow both a theoret-
ically sound description of the dispersive terms absent in the NSWEs and an efficient numerical solution by means
of finite-volume techniques, the best suited for the NSWEs.

The model equations are briefly described in Sect. 2, while Sect. 3 gives a more detailed account of the numerical
approach in use. Results aimed at a preliminary validation of the numerical solver and useful to illustrate the main
features of numerical solutions for waves propagating on a beach are summarized in Sect. 4. This also provides a
short discussion of the research activities underway to improve the practical features of the model (e.g., shoaling).

2 The DNSWEs

2.1 Background

For the analyses which follow, we define the scaling needed to pass from dimensional (starred) to dimensionless
(non-starred) variables (see also Fig. 1). In the region in which the bed is approximately horizontal (h∗ � const.) it
reads:

x∗ = x∗
0 x = x

k∗ , η∗ = d∗
0η, t∗ = t

k∗√gd∗
0

, u∗ =
√

gd∗
0 u, h∗ = d∗

0 h, (1)

where k∗ = 2π/L∗, L∗ is the wave length, d∗
0 is a scale for the water depth (here taken as the offshore still-water

depth), g is the gravity acceleration. We also define the (dimensionless) dispersion coefficient µ = k∗d∗
0 and the

(dimensionless) nonlinearity parameter ε = H∗
0 /d

∗
0 where H∗

0 is the wave amplitude. As a consequence, the order
of magnitude of η (as well as u) is O(ε).

To illustrate all the details of our analysis we refer to a specific set of BTEs chosen (see also [7], ALB08 in the
following, and [8]) because it is:
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DNSWEs: some numerical results 73

Fig. 1 Sketch of geometry
and flow dimensionless
variables for the beach
problem

– (1)physically sound and complete and (2) has practical applicability. First of all, it has been derived without
assuming the flow to be irrotational, hence it can intrinsically handle rotational and breaking waves, this being
an essential feature of any model wishing to represent real-life nearshore flows;

– (3)theoretically well posed and (4) can be effectively solved. The model is weakly nonlinear and weakly dis-
persive, hence, though being rather simple and of compact form, it retains all the fundamental properties of the
class of models we want to study.

Following ALB08we refer to the following O(µ4, εµ2)-accurate model equations (typical of a weakly nonlinear
BTEs model):

ηt + Qx = 0, Qt +
(

d2

2
+ Q2

d

)

x
−µ2d2

[
d

3
uxxt +dx uxt + hxx

2
ut

]
=hx d, (2)

in which u is the onshore velocity, η is the free-surface location, h = h(x) is the still-water depth, d = h + η is the
total water depth and Q ≡ ud.

These extend those of [8] to properly describe frequency dispersion also in the very shallow near-shoreline waters
(see ALB08 and [9]).

As a first step towards achieving a hyperbolic approximation of the above model equations, ALB08 performed
some pre-conditioning of the O(µ2)-dispersive terms. Such a procedure can, in principle, be applied to more com-
plicated BTEs (like fully nonlinear and fully dispersive) the price being a major practical difficulty of handling the
large amount of high-order terms involved. In this respect the chosen model has the merits of providing, at a rea-
sonably reduced cost, both a physically sound description of the nearshore dynamics and a complete representation
of dispersive and nonlinear phenomena.

After some algebra, and in the presence of bathymetry smooth enough that both |hxx | � 1 and h2
x/3 � 1, the

following dimensional system of model equations is achieved (see ALB08 for details):

dt + Qx = 0, Qt +
(

d2

2
+ Q2

d
− µ2 d2 Qxt

3

)

x
= hx d

(
1 − µ2 Qxt

3

)
. (3)

The accuracy of the system (3) is still O(µ4, εµ2) but, differently from the original system of [8], it satisfies the
following conditions:

1. the approximated dispersive terms account for the main dispersive mechanisms over the entire nearshore;
2. such dispersive terms tend to zero as d tends to zero;
3. they can be written in conservative form when the hyperbolic approximation is applied.

The latter condition is needed to apply the hyperbolic approximation described in the next section and, consequently,
to get correct shock relations.

2.2 The model equations

Apart from the terms depending on Qxt , system (3) is very similar to a quasi-linear set of hyperbolic equations.
Hence, solution of this set can make the most of all the results (mathematical and numerical) available for this class
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of equations. Thus, a mathematical procedure which enables rewriting the DNSWEs as a hyperbolic quasi-linear
systems avoids all the numerical problems arising when modeling the dispersive BTEs terms. Hence, our aim is
to introduce variables and equations suited to rewrite the previous system as a hyperbolic quasi-linear system. We
call such a procedure a hyperbolic approximation of the BTEs. In the following we first define the hyperbolic
approximation based on a time-average procedure and, then, extend it in a general way.

2.2.1 Physical interpretation

A simple physical interpretation of the proposed model is suggested here: the hyperbolic model can be derived by
an averaging procedure. Consider the dimensionless system (3) as a starting model of accuracy O(εµ2, µ4) and,
for the sake of simplicity, assume h = constant. We, then, define the following averaging operator:

f̄ (t; x) = 1

2τ

t + τ∫

t − τ
f (s; x) ds. (4)

The time scale τ is fixed and is assumed to be small enough.
By averaging, introducing the pseudo-potential function ψ = ηt t , neglecting the high-order terms and using the

continuity equation, the system (3) becomes (see ALB08 for details):

η̄t + Qx = 0, Qt +
(

d̄2

2
+ Q

2

d̄
+ µ2

3
d̄2ψ

)

x

= 0,
τ 2

6
ψt t + ψ + Q̄xt = 0. (5)

It is simple to show that system (5) is both hyperbolic and dispersive. Moreover, choosing τ 2 proportional to µ2,
it has the same order of accuracy of the original non-hyperbolic model (3). This means that (5) is not only the
hyperbolic approximation of the second-order shallow-water equations, but it can be considered as the dispersive
shallow-water model in its own right.

2.2.2 A hyperbolic approximation

The generalization of the averaging procedure of the previous section can be achieved through use of two pseudo-
potential functions. We first assume the existence of a new variable ψ∗ enabling the substitution:

Q∗
x∗t∗ −→ Q∗

x∗t∗ + γψ∗
t∗t∗ , (6)

in which γ is a positive dimensionless parameter (such a hypothesis implies [ψ∗] has the dimensions of a length,
i.e., [ψ∗] = L). To obtain an approximation “near” to the starting set of the dispersive equations, we assume γ � 1
and impose ψ∗ to obey the constitutive equation:

− A∗ψ∗ = Q∗
x∗t∗ + γψ∗

t∗t∗ , (7)

in which A∗ is a positive dimensional parameter ([A∗] = T−2). Under specific initial conditions (see ALB08 for
details), Eq. 7 enables ψ∗ to approximate Q∗

x∗t∗ for γ � 1. Defining ψ∗ = ψ0ψ and balancing (7) (the leading
term is Q∗

x∗t∗ ), we haveψ0 = µ2g/A∗ in accordance with the scaling in use. Conversely, A∗ must not depend on the
scaling; then a possible choice is A∗ = ag/d∗

0 in which a is a positive dimensionless number used to “normalize”
the value of A∗ (i.e., we can always assume A∗ = 1s−2 with no loss of generality). To write the system in the
canonical conservative format, we introduce the pseudo-potential φ∗ such that φ∗

t∗ = ψ∗. Defining φ∗ = φ∗
0φ and

balancing the previous equation, we obtain the following scale relationship: φ∗
0 = ψ∗

0 t∗0 . Using the results obtained
above, we, finally, get the dimensionless DNSWEs:

dt + Qx = 0, Qt +
(

d2

2
+ Q2

d
+ µ2 d2

3
ψ

)

x
= hx d

(
1 + µ2ψ

3

)
, φt = ψ, γ

µ2

a
ψt + Qx = −φ. (8)

Note that if h = constant, the system (8) reduces to (5). In this case, we get τ 2/6 = µ2γ /a.
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DNSWEs: some numerical results 75

3 The solution method

The DNSWEs (8) can be written in the typical general form used for hyperbolic systems of conservation laws:

PDEs : ut + f(u)x = S(u),
ICs : u(x, 0) = u0(x).

}
(9)

Since the dissipative/productive process, associated with the source term of system (9), is much faster than the
conservative one, associated with the homogeneous part of the equations, the source term is said to be “stiff” and
appropriate algorithms are required for its solution.

By integrating the system of balance laws (9) over a finite space–time control volume, the finite-volume
formulation can be obtained, which reads

ūn+1
i = ūn

i − �t

�xi

(
fi+ 1

2
− fi− 1

2

)
+�t S̄i . (10)

A numerical flux and a numerical source term have to be chosen, such that the numerical scheme is consistent,
stable and accurate. Moreover, the scheme has to be well-balanced, robust (even on coarse grids) and asymptotically
consistent.

A wealth of methods to solve numerically systems of balance laws with stiff source terms is available in the
literature. The best schemes are well-balanced and asymptotically consistent, but the only one that can reach any
order of accuracy in space and time under standard CFL stability conditions is the one proposed by Dumbser
et al. [10]. We have chosen such a scheme to solve the DNSWEs. We here provide a synthetic, though complete,
description of the method, mainly focussing on the steps needed to apply it to the specific problem here at hand,
i.e., the DNSWEs. More details on the numerical technique can be found in [10].

3.1 An explicit, arbitrary high-order accurate, finite-volume scheme for nonlinear hyperbolic systems
with stiff source terms

In this section we briefly summarize the method of [10] and describe its application to the DNSWEs.
The spatial computational domain 	 ∈ IR is completely covered by pairwise disjoint spatial elements Qi =

]xi− 1
2
; xi+ 1

2
[, with �xi = xi+ 1

2
− xi− 1

2
and the cell average of u(x, t) within Qi at the time tn is defined as

ūn
i = 1

�xi

x
i+ 1

2∫

x
i− 1

2

u(x, tn)dx . (11)

For all the computations which follow, we assume �xi = �x = const. The time step �t = tn+1 − tn together with
the spatial element Qi generate the space–time element Qi = Qi×]tn; tn + �t[. Within one element Qi , local
space- and time-coordinates are defined, such as 0 ≤ ξ ≤ 1 and 0 ≤ τ ≤ 1. They are associated with the global
coordinates x and t by the relations

x = xi− 1
2

+ ξ�xi and t = tn + τ�t. (12)

The standard finite-volume discretization (10) of the system (9) is given, where

fi+ 1
2
=

1∫

0

fh(ui (1, τ ),ui+1(0, τ ))dτ and S̄i =
1∫

0

1∫

0

S(ui (ξ, τ ))dξdτ, (13)

where fh(ui (1, τ ),ui+1(0, τ )) denotes a numerical flux function depending on the two arguments ui (1, τ ) and
ui+1(0, τ ), which are the boundary extrapolated data on the left and on the right side of the element interface i + 1

2 .
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As described in detail in the following, the steps needed to construct an arbitrary high-order essentially
non-oscillatory explicit one-step finite-volume scheme are: (I) nonlinear (non-oscillatory) reconstruction of spa-
tial polynomials from the given cell averages at time tn , (II) local solution of the initial-value problem (9) inside
each element, where the initial data are given by the spatial reconstruction polynomial at time tn , (III) numerical
integration of integrals in (13) and update of the cell averages according to (10).

3.1.1 The nonlinear reconstruction

In the following we briefly describe the proposed nonlinear weighted essentially non-oscillatory (WENO) recon-
struction procedure used to reconstruct higher-order polynomial data within each spatial cell Qi at time tn from the
given cell averages ūn

i .
The reconstruction procedure follows directly form the procedure suggested in [11] for general unstructured

two- and three-dimensional meshes.
Reconstruction is done for each element on a stencil Ss

i , which is given by the following union of the element
Qi and its neighbors Q j :

Ss
i =

i+s+k⋃

j=i+s−k

Q j , (14)

where s is the stencil shift with respect to the central element Qi and k is the spatial extension of the stencil to the
left and to the right. In this approach three fixed reconstruction stencils are always used: S0

i , S−k
i and Sk

i . Given
the cell-average data ūn

i in all elements Qi , we want to obtain a spatial reconstruction polynomial at time tn , in the
form

ws
i (ξ, tn) =

M∑

l=0

ψl(ξ)ŵ
(i,s)
l (tn) = ψl(ξ)ŵ

(i,s)
l (tn), (15)

where (the last step only recalls that summation is made for repeated indices) we use the rescaled Legendre polyno-
mials for the spatial reconstruction basis functions ψl(ξ), such that the ψl(ξ) form an orthogonal basis on the unit
interval I = [0; 1]. The number of polynomial coefficients (degrees of freedom) is L = M + 1, where M is the
degree of the reconstruction polynomial. To compute the reconstruction polynomial wi (ξ, tn) valid for the element
Qi , we require integral conservation for all elements Q j inside the stencil Ss

i , i.e.,
∫

Q j

ws
i (ξ, tn)dξ =

∫

Q j

�l(ξ)dξ ŵ(i,s)
l (tn) = ūn

j , ∀Q j ∈ Ss
i . (16)

Equation 16 yields a linear equation system of the form

A j,lŵ
(i,s)
l (tn) = ūn

j (17)

for the unknown coefficients ŵ(i,s)
l (tn) of the reconstruction polynomial on the stencil Ss

i . Since we choose k = M/2
for even values of M and K = (M + 1)/2 for odd values of M , the number of elements in Ss

i may become larger
than the number of degrees of freedom L . In this case, we can use a constrained least-squares technique according
to [11] to solve (17).

To obtain the final non-oscillatory reconstruction polynomials for each Qi at time tn , we finally construct a
data-dependent nonlinear combination of the polynomials w0

i (ξ, tn), w−k
i (ξ, tn) and wk

i (ξ, tn) obtained from the
central, left-sided and right-sided stencils as follows:

wi (ξ, tn) = ŵi
l (t

n)�l(ξ), (18)

with

ŵi
l (t

n) = ω0ŵ0
i (ξ, tn)+ ω−kŵ−k

i (ξ, tn)+ ωkŵk
i (ξ, tn). (19)
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The expressions for the nonlinear weights ωs can be found in [11]. These weights are such that the proposed
reconstruction typically uses the accurate and linearly stable central-stencil reconstruction in those regions where
the solution is smooth. However, in the presence of discontinuities, the smoother left- or right-sided stencils are
preferred, as for standard ENO and WENO methods.

For nonlinear hyperbolic systems, the reconstruction should be made using characteristic variables (see [11,12])
in order to avoid spurious oscillations that may appear when applying ENO or WENO reconstruction operators
component-wise to nonlinear hyperbolic systems.

After the reconstruction procedure, we get a non-oscillatory spatial polynomial ws
i (ξ, tn) defined at time tn

inside each spatial element Qi . However, in order to compute the integrals in (13), we need to compute the temporal
evolution of these polynomials inside each space–time element Qi in order to be able to compute the integrals
appearing in (13).

Since it is a well-known fact that methods based on Taylor series usually do not work in the presence of stiff
source terms, Dumbser et al. [10] propose to replace the Cauchy–Kovalewsky procedure, generally used for the
temporal evolution of the reconstruction polynomial, by a new local space–time Discontinuous Galerkin (DG)
scheme.

3.1.2 The local space–time Discontinuous Galerkin scheme

In the following, we briefly illustrate the local space–time DG scheme of [10].
The space of basis and test functions Vh of the local space–time DG scheme is defined as the space spanned

by piecewise polynomials given by the space–time tensor products of the scaled Legendre polynomials ψi (ξ) and
ψ j (τ ) of degree 0 ≤ i, j ≤ M , i.e.,

φk = φk(ξ, τ ) = ψi (ξ)
⊗
ψ j (τ ), (20)

where 1 ≤ k = k(i, j) ≤ Nd , with Nd = (M + 1)2. The local numerical solution of (9) ui
p, inside each space–time

control volume dQi , is approximated within the reference element QE = [0; 1] using the basis functions φk , i.e.,

ui
p(ξ, τ ) =

Nd∑

l=1

φl(ξ, τ )û
i
l = φl(ξ, τ )û

i
pl . (21)

Moreover, the following two scalar products of two functions f (ξ, τ ) and g(ξ, τ ) are defined

〈 f, g〉 =
1∫

0

1∫

0

f (ξ, τ )g(ξ, τ )dξdτ, [ f, g] =
1∫

0

f (ξ, τ )g(ξ, τ )dξ. (22)

In order to obtain the proposed local space–time DG finite-element method for general nonlinear hyperbolic
systems of conservation laws with source terms, the system (9) is re-written in local coordinates of the reference
element
∂

∂τ
u + ∂

∂ξ
f∗(u) = S∗(u), (23)

where f∗(u) = �tξx f(u) and S∗(u) = �tS(u). Hence, the modified governing equations are multiplied by the test
functions φk and integrated over the reference element QE . In order to keep a local formulation, which does not
need any information from the neighbor elements, the integration by parts is used only in time; it gives

[φk(ξ, 1),u(ξ, 1)] − [φk(ξ, 0),u(ξ, 0)] −
〈
∂

∂τ
φk,u

〉
+

〈
φk,

∂

∂ξ
f∗(u)

〉
= 〈φk,S∗(u)〉. (24)

The initial condition is given by the reconstruction polynomials obtained from the reconstruction operator applied
to the cell averages at the current time tn . Using the time fluxes and the ansatz (21) for the numerical solution, we
obtain

[φk(ξ, 1), φl(ξ, 1)]ûi
l − [φk(ξ, 0), ψm(ξ)]ŵi

m(t
n)−

〈
∂

∂τ
φk, φl

〉
ûi

l +
〈
φk,

∂

∂ξ
f∗(φl ûi

l )

〉
=

〈
φk,S∗(φl ûi

l )
〉
. (25)
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In order to solve the local nonlinear set of equations (25), it is necessary to use an algorithm for finding roots of
nonlinear equation systems, for instance the Newton method. The strategy suggested by Dumbser et al. [10] is based
on the following steps:

1. the nonlinear system (25) is linearized with respect to the initial condition given by Wi (ξ, tn);
2. the resulting linear equation system is solved exactly using Gauss–Jordan elimination and an initial guess Û(i,1)l

of the solution Ûi
l is obtained;

3. a new linearization of the system (25) about Û(i,1)l φl(ξ, 1) is performed and the resulting linear system is solved

producing a second guessed value Û(i,2)l ;

4. this procedure is, usually, repeated three times and the third guessed value Û(i,1)l is the starting point of a
standard multivariate Newton method for nonlinear systems of equations.

Once the solution ūi
l of the local space–time DG method (25) is known, it is possible to use the solution

ui (ξ, τ ) = �l(ξ, τ )ûi
l to compute the arguments for the source term and the numerical flux in (13) that are needed

for the explicit finite-volume scheme (10). The integral appearing in (13) are computed using classical Gaussian
quadrature formulae; see, e.g., [13] for details.

3.2 A well-balanced scheme

Standard methods that correctly solve systems of conservation laws can fail when approaching equilibria or near
equilibria solutions. In the context of shallow-water equations, Bermúdez et al. [14] introduced the condition called
“conservation property”: a scheme is said to satisfy this condition if it correctly solves the steady-state solutions
corresponding to water at rest. This idea of constructing numerical schemes that preserve some equilibria, which
are called in general well-balanced schemes has been extended in different ways; in particular, the work developed
by Castro et al. [15] provides a general expression for a well-balanced high-order method, based on the use of
a first-order Roe scheme and reconstruction of states. From such a general expression, specific schemes can be
deduced for any system of balance laws, and in such a way that the numerical treatments of the terms (for sources
and for coupling) are derived automatically. For this reason, such a method can be easily applied also to the explicit
arbitrarily high-order accurate finite-volume scheme for nonlinear hyperbolic systems with stiff source terms of
[10].

To use the procedure suggested by [15], the generic hyperbolic system of balance laws
∂

∂t
u + ∂

∂x
f(u) = S(u)

∂σ

∂x
, (26)

where σ(x) is a known function from IR to IR, must be rewritten as an extended quasi-linear non-conservative
system:
∂u
∂t

+ A(u)
∂u
∂x

= 0, x ∈ R, t > 0, (27)

after adding to (26) the trivial equation
∂σ

∂t
= 0. (28)

The term ∂σ
∂x in (26) represents the x-derivative of a generic function (of the x-variable, only), which can be present

in the system, and which can lead to numerical integration problems. In the specific case in hand, such a term
represents the x-derivative of the still-water depth, which accounts for bed variations (and it does not depend on
time in a fixed-bed approximation).

Then, by introducing a family of paths � and a Roe linearization A� of system (27), the explicit arbitrary
high-order accurate finite-volume scheme for nonlinear hyperbolic systems with stiff source terms of [10] can be
easily made to be well-balanced. In particular, the update formula for (26) becomes:

un+1
i = un

i − �t

�x
(fi+ 1

2
− fi− 1

2
+ Ai ), (29)
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where

fi+ 1
2

=
tn+1∫

tn

A−
i+ 1

2
(u+

i+ 1
2
(t)− u−

i+ 1
2
(t))dt, (30)

fi− 1
2

= −
tn+1∫

tn

A+
i− 1

2
(u+

i− 1
2
(t)− u−

i− 1
2
(t))dt (31)

and

Ai =
x

i+ 1
2∫

x
i− 1

2

tn+1∫

tn

A(ui (x, t))
d

dx
ui (x, t))dxdt. (32)

Here the intermediate matrices are defined by

Ai+ 1
2

= A�(Un
i ,Un

i+1) (33)

and

L±
i+ 1

2
=

⎡

⎢
⎢
⎢
⎣

(λ
i+ 1

2
1 )± . . . 0
...

. . .
...

0 . . . (λ
i+ 1

2
N )±

⎤

⎥
⎥
⎥
⎦
, A±

i+ 1
2

= Ki+ 1
2
L±

i+ 1
2
K−1

i+ 1
2
, (34)

where Li+ 1
2

is the diagonal matrix whose coefficients are the eigenvalues of Ai+ 1
2
:

λ
i+ 1

2
1 < λ

i+ 1
2

2 < · · · < λ
i+ 1

2
N , (35)

and Ki+ 1
2

is a N × N matrix whose columns are the associated eigenvectors. Moreover, the arguments ui (x, t) for

the numerical fluxes in (30) and (31) and for the matrix A in (32) are given by the solution ui (ξ, τ ) = �l(ξ, τ )ûi
l ,

obtained by solving the local space–time DG method (25). For the sake of simplicity, the simplest family of paths
can be chosen, i.e., the family of segments (see [15]). It can be shown [16] that the method (29) based on the family
of segments is well-balanced at least with order 2.

4 Some results

In the following two subsections some results are shown which illustrate the potential of the equations in use and
the quality of the wave-type solutions of the DNSWEs.

4.1 A fundamental solution

The DNSWEs have an analytical solution in the form of solitary waves over a horizontal bed. Such a solution
represents a good benchmark for the numerical one, as a direct comparison can be easily made between the two.
The procedure for calculating the analytical solitary-wave solution can be found in ALB08. To test the numerical
propagation of the solitary-wave solution of the DNSWEs, we need to write such an analytical solution as an
appropriate initial condition for the model. In particular, we need:

d0(x) = d(x, t = 0), Q0(x) = Q(x, t = 0),
φ0(x) = φ(x, t = 0), ψ0(x) = ψ(x, t = 0).

(36)
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To get the initial data we have to solve the following Ordinary Differential Equation (ODE) (see ALB08)
(

dd

dx

)2

= 2

Fr2(γ̂ ŵ(d)−1)2

{

3

[
Fr2

2d2 − 1+2Fr2

2 d
− d

2
+1+ Fr2

2

]
−γ̂ ψ̂

2(d)

2

}

, (37)

where

ψ̂(d)≡µ2ψ= 3

d2

(
1

2
+Fr2− d2

2
− Fr2

d

)
, ŵ(d)= 3

d4 [3Fr2−(1+2Fr2)d], (38)

and γ̂ = γ /a. Equation 37 has been obtained under the usual hypotheses for solitary waves, that is: (i) we assume
the flow is steady in the coordinate system moving with a constant Froude number Fr = V ∗/

√
gd∗

0 > 0, (ii) we
assume all the variables to depend only on ξ = (x −Fr t)/µ, (iii) we consider the typical “Solitary wave” asymptotic
conditions, that is:

Q, φ, ψ → 0, d → h,
dd

dξ
→ 0,

d2d

dξ2 → 0, for ξ → ±∞.

By applying the square root to (37), two different ODEs can be found; each of them represents one half of the
solitary wave (the positive root is the ascending part, while the negative one is descending). Equation 37 has to be
solved with the initial condition

d(x = 0) = h (39)

until the crest of the solitary wave dmax is reached. Since the term

� = 3

[
Fr2

2d2 − 1 + 2Fr2

2d
− d

2
+ 1 + Fr2

2

]
− γ̂

ψ̂2(d)

2
(40)

has among its zeros the maximum value of the water depth dmax of the solitary wave and the still water level h,
solving such an equation can give rise to numerical problems. These can be overcome by first modifying the initial
condition as

d(x = 0) = h + ε, (41)

with ε � 1. Then an appropriate numerical tool has to be used. We have chosen the same algorithm implemented
for the solution of the system of the DNSWEs [10]. Such a scheme automatically reduces to a standard DG method
for the nonlinear system of ODEs

d

dt
U = S(U). (42)

Once the solution for d has been found, the dimensional d∗ can be obtained as d∗ = d∗
0 d. Hence, the other

variables Q∗, φ∗ and ψ∗ can be computed. In particular, Q is given by (see ALB08):

Q = Fr(d − 1), (43)

from which the dimensional flow rate

Q∗ = d∗
0

√
gd∗

0 Q. (44)

We can compute ψ∗ by using the solution for ψ̂ given in (38). We get:

ψ∗ = ψ∗
0ψ = ψ∗

0
ψ̂

µ2 = d∗
0

a
ψ̂. (45)

Finally, to compute φ∗, we use the following result:

φ̂ ≡ µφ =
√√
√
√2

{

3

[
Fr2

2d2 − 1 + 2Fr2

2d
− d

2
+1+ Fr2

2

]
− γ̂

ψ̂2(d)

2

}

, (46)
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and, finally, get:

φ∗ =
√

gd∗
0

A∗ φ̂ = d∗
0

a

√
d∗

0

g
φ̂. (47)

These formulations allow us to compute d as a function of the Froude number Fr (see (37)), instead of the
maximum wave height. If dmax has to be assigned, a particular procedure has to be followed. Let us first recall
that, if γ̂ = 0, it is dmax = Fr2. Moreover, dmax is one of the roots of � in Eq. 40. Hence, dmax can be computed
iteratively, by finding the Froude number which makes one of the roots of (40) equal to the desired dmax. A starting
value of Fr is given by the approximation for γ̂ = 0, i.e., Fr = √

dmax.
The procedure to get the desired solitary wave initial condition is:

1. choose the desired solitary wave, i.e., assign dmax;
2. compute the relative Froude number Fr;
3. solve (37) and get d∗ for the ascending part of the solitary wave;
4. by symmetry compute d∗ for the descending part;
5. compute Q∗, ψ∗ and φ∗ with Eqs. 44, 45 and 47.

With initial condition described above and still water depth h∗ = 1m some numerical computations have been
performed using 300 cells and periodic boundary conditions. In the top panel of Fig. 2, the total water depth is
plotted for both solutions. The solid line represents the analytical solution, while the dotted line represents the 3rd
order numerical solution after 2s. The dashed line, instead, shows the 3rd order numerical solution after a complete
loop of the wave over the computational domain. The lower panel of the same Fig. 2, instead, gives the same
illustration for the variable ψ∗. The match between the analytical and the numerical solutions for both variables is
excellent, the two curves being visually superposed one to the others. Such a good agreement, which also testifies the
good performances of the periodic boundary conditions, clearly illustrates the absence of any dissipative numerical
effects. This is particulary remarkable for the variable ψ∗, which is strongly affected by the stiffness of the source
terms.

4.2 Propagation of waves on a beach

The DNSWEs are here applied to study a case of one-dimensional wave propagation, i.e., that of solitary waves
propagating over plane slopes. Simulations have been performed for solitary waves with different initial relative
height ε = H∗

0 /d
∗
0 , propagating over various different slopes ranging from gentle to steep. Figure 3 gives the main

details about the domain configuration, which consists of a constant-depth (d∗
0 ) region on the left and a sloping

(s) region on the right. Coordinates are set such that the toe of the slope corresponds to x = 0. Solitary waves are
generated over the constant-depth region and made propagate to the right.

In order to compare the model performances with a reliable and well-known benchmark for non-breaking waves
propagating over a beach, we have reproduced the flow conditions described in Wei et al. [17]. Hence, four different
slopes, s = 1 : 100, 1 : 35, 1 : 15 and 1 : 8, have been used in the computations. On each slope, solitary wave of relative
heights of ε= 0.2 and ε= 0.3 have been run (see Fig. 4).

It is here essential to recall (see ALB08 for more details) that the solitary wave solution of the DNSWEs is
different in shape from the classical solitary waves used to initialize BTEs models (see Fig. 4). [This fact is typical
of the comparison between model equations which admit different permanent-form solitary wave solution (see,
for example, [17]).] In particular the DNSWEs solitary wave is broader than the KdV one (see [18, Chap. 11] for
details), the difference in breadth increasing with increasing nonlinearity (ε). This, obviously, induces shape differ-
ences for the entire propagation process which are product neither of the DNSWEs model propagation mechanism
nor of the numerical computation.

In the top panel of Fig. 5 the DNSWEs wave solutions are plotted against the solutions computed by [17], see their
Fig. 4, using their Fully Nonlinear Boussinesq Model, for ε = 0.2 and s = 1 : 35 at different time steps (t∗1 = 5.19s,
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Fig. 2 Solitary wave on horizontal bed

Fig. 3 Sketch of a solitary
wave propagating on a
beach

d

H0

s

*

*

*

t∗2 = 6.59s, t∗3 = 7.67s and t∗4 = 8.28s). [We set t∗ = 0 when wave crests reach the toe of the slope x∗ = 0, hence
the possible reference to negative times.]

In the lower panel of the same figure similar wave solutions are shown for the case ε = 0.3 and s = 1:8 at the
times t∗1 = −0.24s, t∗2 = 0.82s, t∗3 = 1.78s and t∗4 = 2.18s. The first profile to the left of both panels corresponds
to waves about half way up the slope while the last of the top panel corresponds to the theoretical breaking points
in fully nonlinear potential flow computations (no breaking occurs for the waves of the lower panel).
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Fig. 4 Comparison between the DNSWEs solitary wave (solid line) and the KdV solitary wave (dashed line) for ε = 0.2 (left panel)
and ε = 0.3 (right panel)
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Fig. 5 Solitary waves on a beach. The numerical solution of the DNSWEs (solid line) and the fully nonlinear Boussinesq Model
solution of [17] (dashed line, and adapted from Fig. 4 of their paper) are plotted at different times of evolution (from left to right).
Top panel ε = 0.2, s = 1:35. Evolution times are t∗ = 5.19s, 6.59s, 7.67s, 8.28s. Bottom panel ε = 0.3, s = 1 : 8. Evolution times are
t∗1 = −0.24s, 0.82s, 1.78s, 2.18s

From these figures, it is evident that, apart from the predictable difference in wave shape (DNSWEs waves are
broader), there is a good agreement between positions of the wave fronts predicted by our model and the ones given
by [17]. Hence, the wave crest trajectories are in agreement.

For the case ε = 0.3 and s = 1:8, characterized by an Ursell number ε/s2 of about 20 and such that no defor-
mations of the wave tail appear, also the shoaling properties are comparable with those of the Fully Nonlinear
Boussinesq Model of [17].

Rather different is the case ε = 0.2 and s = 1:35, characterized by an Ursell number of about 250 for which
nonlinearities and deformation of the wave tail are important, for which the DNSWEs solution displays a rather
important (about 15% at breaking) undershoaling with respect to the solution of [17]. This contrasts with the typical
behaviour of weakly nonlinear BTEs which, not accounting for high-order contributions in the dispersive parameter
(µ = kh or s), usually produce major overshoaling with respect to fully nonlinear solvers (see [17] for examples).
The reasons for such an undershoaling have to be sought both in the specific chosen DNSWEs (weakly nonlinear),
in the shape of the initial condition solution of the DNSWEs and in the numerical method used for the solution
(finite-volume techniques, using the weak form of the differential problem, allow for discontinuous solution). More
analysis is required in this respect aimed at both evaluating the shoaling properties of the model equations and the
dissipative features of the numerical solver. These can be calibrated by multiplying the higher-order differential
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contribution to the momentum equation (of the type (.)xxt in our case) by a constant coefficient. Both analyses are
ongoing and details will be reported in a forthcoming manuscript.

However, we find it very pleasing to see that a weakly nonlinear DNSWEs model, which contains no calibra-
tion or tuning parameter, captures well the most significant properties of the solution reported by [17], even when
undershoaling occurs.

5 Conclusions

A brief, but complete, account on the theory of the DNSWEs of ALB08 has been provided along with a more
detailed description of the adaptation of the high-order, finite-volume technique by [10] to the solution of the men-
tioned differential system. Subsequently, some preliminary results on the numerical solution of the DNSWEs have
been proposed and illustrated. Analytical and numerical benchmarks have been chosen for this preliminary analysis
which reveals some of the potentials of solving a dispersive–hyperbolic system by means of methods typically used
for hyperbolic sets of nonlinear equations. Work is ongoing to make the model at hand more easily applicable to
computations of practical use.
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